娃哈哈好喝-真的!
技术够用就行,吃好喝好睡好!

mysql慢查询日志分析工具pt-query-digest

mysql慢查询日志分析工具pt-query-digest

工具介绍

pt-query-digest是用于分析mysql慢查询的一个工具,它可以分析binlog、General log、slowlog,也可以通过SHOWPROCESSLIST或者通过tcpdump抓取的MySQL协议数据来进行分析。可以把分析结果输出到文件中,分析过程是先对查询语句的条件进行参数化,然后对参数化以后的查询进行分组统计,统计出各查询的执行时间、次数、占比等,可以借助分析结果找出问题进行优化。

1、安装pt-query-digest

pt-query-digest是percona-toolkit中的一个子功能,percona-toolkit下载地址:https://www.percona.com/downloads/percona-toolkit/LATEST/

首先安装perl模块

[root@rockettest-162 ~]# yum install -y perl-CPAN perl-Time-HiRes

安装percona-toolkit,要使用yum安装

[root@rockettest-162 dl]# ls
percona-toolkit-3.4.0-3.el7.x86_64.rpm
[root@rockettest-162 dl]# yum -y install percona-toolkit-3.4.0-3.el7.x86_64.rpm
[root@rockettest-162 dl]# pt-query-digest --version
pt-query-digest 3.4.0
[root@rockettest-162 dl]#

2 、pt-query-digest用法功能介绍

pt-query-digest [OPTIONS] [FILES] [DSN]
--create-review-table 当使用--review参数把分析结果输出到表中时,如果没有表就自动创建。
--create-history-table 当使用--history参数把分析结果输出到表中时,如果没有表就自动创建。
--filter 对输入的慢查询按指定的字符串进行匹配过滤后再进行分析
--limit   限制输出结果百分比或数量,默认值是20,即将最慢的20条语句输出,如果是50%则按总响应时间占比从大到小排序,输出到总和达到50%位置截止。
--host mysql服务器地址
--user mysql用户名
--password mysql用户密码
--history 将分析结果保存到表中,分析结果比较详细,下次再使用--history时,如果存在相同的语句,且查询所在的时间区间和历史表中的不同,则会记录到数据表中,可以通过查询同一CHECKSUM来比较某类型查询的历史变化。
--review 将分析结果保存到表中,这个分析只是对查询条件进行参数化,一个类型的查询一条记录,比较简单。当下次使用--review时,如果存在相同的语句分析,就不会记录到数据表中。
--output 分析结果输出类型,值可以是report(标准分析报告)、slowlog(Mysql slow log)、json、json-anon,一般使用report,以便于阅读。
--since 从什么时间开始分析,值为字符串,可以是指定的某个”yyyy-mm-dd [hh:mm:ss]”格式的时间点,也可以是简单的一个时间值:s(秒)、h(小时)、m(分钟)、d(天),如12h就表示从12小时前开始统计。
--until 截止时间,配合—since可以分析一段时间内的慢查询。

3、分析结果输出

第一部分:总体统计结果 Overall:总共有多少条查询 Time range:查询执行的时间范围 unique:唯一查询数量,即对查询条件进行参数化以后,总共有多少个不同的查询 total:总计 min:最小 max:最大 avg:平均 95%:把所有值从小到大排列,位置位于95%的那个数,这个数一般最具有参考价值 median:中位数,把所有值从小到大排列,位置位于中间那个数

# 该工具执行日志分析的用户时间,系统时间,物理内存占用大小,虚拟内存占用大小
# 340ms user time, 140ms system time, 23.99M rss, 203.11M vsz
# 工具执行时间
# Current date: Fri Nov 25 02:37:18 2016
# 运行分析工具的主机名
# Hostname: localhost.localdomain
# 被分析的文件名
# Files: slow.log
# 语句总数量,唯一的语句数量,QPS,并发数
# Overall: 2 total, 2 unique, 0.01 QPS, 0.01x concurrency ________________
# 日志记录的时间范围
# Time range: 2016-11-22 06:06:18 to 06:11:40
# 属性               总计     最小   最大   平均   95% 标准   中等
# Attribute         total     min     max     avg     95% stddev median
# ============     ======= ======= ======= ======= ======= ======= =======
# 语句执行时间
# Exec time             3s   640ms     2s     1s     2s   999ms     1s
# 锁占用时间
# Lock time           1ms       0     1ms   723us     1ms     1ms   723us
# 发送到客户端的行数
# Rows sent             5       1       4   2.50       4   2.12   2.50
# select语句扫描行数
# Rows examine     186.17k       0 186.17k 93.09k 186.17k 131.64k 93.09k
# 查询的字符数
# Query size           455     15     440 227.50     440 300.52 227.50

第二部分:查询分组统计结果 Rank:所有语句的排名,默认按查询时间降序排列,通过–order-by指定 Query ID:语句的ID,(去掉多余空格和文本字符,计算hash值) Response:总的响应时间 time:该查询在本次分析中总的时间占比 calls:执行次数,即本次分析总共有多少条这种类型的查询语句 R/Call:平均每次执行的响应时间 V/M:响应时间Variance-to-mean的比率 Item:查询对象

# Profile
# Rank Query ID           Response time Calls R/Call V/M   Item
# ==== ================== ============= ===== ====== ===== ===============
#   1 0xF9A57DD5A41825CA 2.0529 76.2%     1 2.0529 0.00 SELECT
#   2 0x4194D8F83F4F9365 0.6401 23.8%     1 0.6401 0.00 SELECT wx_member_base

第三部分:每一种查询的详细统计结果 由下面查询的详细统计结果,最上面的表格列出了执行次数、最大、最小、平均、95%等各项目的统计。 ID:查询的ID号,和上图的Query ID对应 Databases:数据库名 Users:各个用户执行的次数(占比) Query_time distribution :查询时间分布, 长短体现区间占比,本例中1s-10s之间查询数量是10s以上的两倍。 Tables:查询中涉及到的表 Explain:SQL语句

# Query 1: 0 QPS, 0x concurrency, ID 0xF9A57DD5A41825CA at byte 802 ______
# This item is included in the report because it matches --limit.
# Scores: V/M = 0.00
# Time range: all events occurred at 2016-11-22 06:11:40
# Attribute   pct   total     min     max     avg     95% stddev median
# ============ === ======= ======= ======= ======= ======= ======= =======
# Count         50       1
# Exec time     76     2s     2s     2s     2s     2s       0     2s
# Lock time     0       0       0       0       0       0       0       0
# Rows sent     20       1       1       1       1       1       0       1
# Rows examine   0       0       0       0       0       0       0       0
# Query size     3     15     15     15     15     15       0     15
# String:
# Databases   test
# Hosts       192.168.8.1
# Users       mysql
# Query_time distribution
#   1us
# 10us
# 100us
#   1ms
# 10ms
# 100ms
#   1s ################################################################
# 10s+
# EXPLAIN /*!50100 PARTITIONS*/
select sleep(2)\G

4、用法示例

4.1.直接分析慢查询文件:

pt-query-digest  slow.log > slow_report.log

4.2.分析最近12小时内的查询:

pt-query-digest  --since=12h  slow.log > slow_report2.log

4.3.分析指定时间范围内的查询:

pt-query-digest slow.log --since '2017-01-07 09:30:00' --until '2017-01-07 10:00:00'> > slow_report3.log

4.4.分析指含有select语句的慢查询

pt-query-digest --filter '$event->{fingerprint} =~ m/^select/i' slow.log> slow_report4.log

4.5.针对某个用户的慢查询

pt-query-digest --filter '($event->{user} || "") =~ m/^root/i' slow.log> slow_report5.log

4.6.查询所有所有的全表扫描或full join的慢查询

pt-query-digest --filter '(($event->{Full_scan} || "") eq "yes") ||(($event->{Full_join} || "") eq "yes")' slow.log> slow_report6.log

4.7.把查询保存到query_review表

pt-query-digest --user=root –password=abc123 --review  h=localhost,D=test,t=query_review--create-review-table  slow.log

4.8.把查询保存到query_history表

pt-query-digest  --user=root –password=abc123 --review  h=localhost,D=test,t=query_history--create-review-table  slow.log_0001
pt-query-digest --user=root –password=abc123 --review h=localhost,D=test,t=query_history--create-review-table slow.log_0002

4.9.通过tcpdump抓取mysql的tcp协议数据,然后再分析

tcpdump -s 65535 -x -nn -q -tttt -i any -c 1000 port 3306 > mysql.tcp.txt
pt-query-digest --type tcpdump mysql.tcp.txt> slow_report9.log

4.10.分析binlog

mysqlbinlog mysql-bin.000093 > mysql-bin000093.sql
pt-query-digest --type=binlog mysql-bin000093.sql > slow_report10.log

4.11.分析general log

pt-query-digest  --type=genlog  localhost.log > slow_report11.log
赞(0)
未经允许不得转载:娃哈哈好喝 » mysql慢查询日志分析工具pt-query-digest
分享到: 更多 (0)